This collection of quotes is being compiled by Lo Snöfall

18 November 2010

http://www.bbc.co.uk/news/science-environment-11773791
Researchers at Cern, home of the Large Hadron Collider, have held 38 antihydrogen atoms in place, each for a fraction of a second.
Antihydrogen has been produced before but it was instantly destroyed when it encountered normal matter.
The team, reporting in Nature, says the ability to study such antimatter atoms will allow previously impossible tests of fundamental tenets of physics.
The current "standard model" of physics holds that each particle - protons, electrons, neutrons and a zoo of more exotic particles - has its mirror image antiparticle.
The antiparticle of the electron, for example, is the positron, and is used in an imaging technique of growing popularity known as positron emission tomography.
However, one of the great mysteries in physics is why our world is made up overwhelmingly of matter, rather than antimatter; the laws of physics make no distinction between the two and equal amounts should have been created at the Universe's birth.

"Atoms are neutral - they have no net charge - but they have a little magnetic character," explained Jeff Hangst of Aarhus University in Denmark, one of the collaborators on the Alpha antihydrogen trapping project.
"You can think of them as small compass needles, so they can be deflected using magnetic fields. We build a strong 'magnetic bottle' around where we produce the antihydrogen and, if they're not moving too quickly, they are trapped," he told BBC News.

"What we'd like to do is see if there's some difference that we don't understand yet between matter and antimatter," Professor Hangst said.
"I'm delighted that it worked as we said it should," Professor Gabrielse told BBC News.
"We have a long way to go yet; these are atoms that don't live long enough to do anything with them. So we need a lot more atoms and a lot longer times before it's really useful - but one has to crawl before you sprint.
Professor Gabrielse's group is taking a different tack to prepare more of the antihydrogen atoms, but said that progress in the field is "exciting".
"It shows that the dream from many years ago is not completely crazy."

Blog Archive