In complex vertebrates, including humans, the amygdalae perform primary roles in the formation and storage of memories associated with emotional events. Research indicates that, during fear conditioning, sensory stimuli reach the basolateral complexes of the amygdalae, particularly the lateral nuclei, where they form associations with memories of the stimuli. The association between stimuli and the aversive events they predict may be mediated by long-term potentiation, a sustained enhancement of signalling between affected neurons.
More emotionally-arousing information increases amygdalar activity, and that activity correlates with retention. Amygdala neurons show various types of oscillation during emotional arousal, such as theta activity. These synchronized neuronal events could promote synaptic plasticity (which is involved in memory retention) by increasing interactions between neocortical storage sites and temporal lobe structures involved in declarative memory.
A 2003 study found that adult and adolescent bipolar patients tended to have considerably smaller amygdala volumes and somewhat smaller hippocampal volumes. Many studies have focused on the connections between the amygdala and autism.
Individuals with larger amygdalae had larger and more complex social networks. They were also better able to make accurate social judgments about other persons' faces. It is hypothesized that larger amygdalae allow for greater emotional intelligence, enabling greater societal integration and cooperation with others.
The right amygdala's role in fear and anxiety is well known. In one study,electrical stimulations of the right amygdala induced negative emotions, especially fear and sadness. In contrast, stimulation of the left amygdala was able to induce either pleasant (happiness) or unpleasant (fear, anxiety, sadness) emotions. Other evidence suggests the left amygdala plays a role in the brain's reward system.
http://en.wikipedia.org/wiki/Hippocampus
The causes of schizophrenia are not at all well understood, but numerous abnormalities of brain structure have been reported. The most thoroughly investigated alterations involve the cerebral cortex, but effects on the hippocampus have also been described. Many reports have found reductions in the size of the hippocampus in schizophrenic subjects. The changes probably result from altered development rather than tissue damage, and show up even in subjects who have never been medicated. Several lines of evidence implicate changes in synaptic organization and connectivity. It is unclear whether hippocampal alterations play any role in causing the psychotic symptoms that are the most important feature of schizophrenia. Anthony Grace and his co-workers have suggested, on the basis of experimental work using animals, that hippocampal dysfunction might produce an alteration of dopamine release in the basal ganglia, thereby indirectly affecting the integration of information in the prefrontal cortex. Others have suggested that hippocampal dysfunction might account for disturbances in long term memory frequently observed in people with schizophrenia.
The hippocampus has a generally similar appearance across the range of mammal species, from monotremes such as the echidna to primates such as humans. The hippocampal-size-to-body-size ratio broadly increases, being about twice as large for primates as for the echidna. It does not, however, increase at anywhere close to the rate of the neocortex-to-body-size ratio. Therefore, the hippocampus takes up a much larger fraction of the cortical mantle in rodents than in primates. In adult humans, the volume of the hippocampus on each side of the brain is about 3–3.5 cm3, as compared to 320–420 cm3 for the volume of the neocortex.
http://en.wikipedia.org/wiki/Human_brain
Estimates for the number of neurons (nerve cells) in the human brain range from 80 to 120 billion. Most of the expansion comes from the cerebral cortex, especially the frontal lobes, which are associated with executive functions such as self-control, planning, reasoning, and abstract thought. The portion of the cerebral cortex devoted to vision is also greatly enlarged in human beings, and several cortical areas play specifiThe dominant feature of the human brain is corticalization. The cerebral cortex in humans is so large that it overshadows every other part of the brain. A few subcortical structures show alterations reflecting this trend.c roles in language, a skill that is unique to humans.
Although there are enough variations in the shape and placement of gyri and sulci (cortical folds) to make every brain unique, most human brains show sufficiently consistent patterns of folding that allow them to be named.
Researchers who study the functions of the cortex divide it into three functional categories of regions, or areas. One consists of the primary sensory areas, which receive signals from the sensory nerves and tracts by way of relay nuclei in the thalamus. Primary sensory areas include the visual area of the occipital lobe, the auditory area in parts of the temporal lobe and insular cortex, and the somatosensory area in the parietal lobe. A second category is the primary motor area, which sends axons down to motor neurons in the brainstem and spinal cord. This area occupies the rear portion of the frontal lobe, directly in front of the somatosensory area. The third category consists of the remaining parts of the cortex, which are called the association areas. These areas receive input from the sensory areas and lower parts of the brain and are involved in the complex process that we call perception, thought, and decision making.
Understanding the relationship between the brain and the mind is a great challenge.[19] It is very difficult to imagine how mental entities such as thoughts and emotions could be implemented by physical entities such as neurons and synapses, or by any other type of mechanism. The difficulty was expressed by Gottfried Leibniz in an analogy known as Leibniz's Mill:
Incredulity about the possibility of a mechanistic explanation of thought drove René Descartes, and most of humankind along with him, to dualism: the belief that the mind exists independently of the brain. There has always, however been a strong argument in the opposite direction. There is overwhelming evidence that physical manipulations of the brain, for example by drugs, can affect the mind in potent and intimate ways. To put it crudely: if a person gets knocked on the head, that person's mind goes away. The large body of empirical evidence for a close relationship between brain activity and mind activity has led the great majority of neuroscientists to be materialists: people who believe that mental phenomena are ultimately reducible to physical phenomena.One is obliged to admit that perception and what depends upon it is inexplicable on mechanical principles, that is, by figures and motions. In imagining that there is a machine whose construction would enable it to think, to sense, and to have perception, one could conceive it enlarged while retaining the same proportions, so that one could enter into it, just like into a windmill. Supposing this, one should, when visiting within it, find only parts pushing one another, and never anything by which to explain a perception. — Leibniz, Monadology
http://en.wikipedia.org/wiki/Heart
The human embryonic heart begins beating at around 22 days after conception.
http://en.wikipedia.org/wiki/Human_heart